Need an amazing tutor?

www.teachme2.com/matric

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: FITTING AND MACHINING MAY/JUNE 2024 MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 22 pages.

Need an amazing tutor? www.teachme2.com/matric

Mechanical Technology: Fitting and Machining 2 DBE/May/June 2024 SC/NSC – Marking Guidelines

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	A ✓	(1)
1.2	В ✓	(1)
1.3	A ✓	(1)
1.4	D ✓	(1)
1.5	C ✓	(1)
1.6	C ✓	(1) [6]

Mechanical Technology: Fitting and Machining 3 SC/NSC – Marking Guidelines DBE/May/June 2024

QUESTION 2: SAFETY (GENERIC)

2.1 First aid:

- When illness occurs. ✓
- When an injury is sustained. ✓
- When an accident occurs. ✓

(Any 2 x 1) (2)

2.2 **Bench grinder:**

- A. A fire extinguisher should be readily available. ✓
- B. Safety glasses must be worn. ✓
- C. Maximum grinding wheel speed. ✓
- D. Maximum distance between tool rest and grinding wheel. ✓ (4)

2.3 **Drill press:**

- Never try to stop/hold the work piece by hand when the drill bit get stuck during drilling. ✓
- Don't force a drill bit into the work piece. ✓
- Keep loose clothing and hair away from revolving parts. ✓
- Never leave the machine running if it is unattended. ✓
- Use a brush or wooden rod to remove chips from the drill. ✓
- Do not put hands near moving parts. ✓
- Never clean or adjust the machine while it is in motion. ✓
- Never try to stop the drill/chuck by hand. ✓

(Any 2 x 1) (2)

2.4 **Surface grinder:**

- Never clean or adjust the machine while it is in motion. ✓
- Know how to stop the machine in an emergency. ✓
- Do not use excessive force when grinding the work piece. ✓
- Immediately report any dangerous defects of the machine. ✓
- Stop using defective machinery until it has been repaired by a qualified person. ✓
- Ensure that the grinding wheel is not submerged in coolant. ✓
- Never leave the machine running if it is unattended. ✓
- Do not put hands near moving parts. ✓

(Any 2 x 1) (2) [10]

Mechanical Technology: Fitting and Machining 4 DBE/May/June 2024 SC/NSC – Marking Guidelines

QUESTION 3: MATERIALS (GENERIC)

3.1 **Critical temperature:**

3.1.1 **Hardening:**Above ✓ (1)

3.1.2 **Tempering:**

Below ✓ (1)

3.1.3 **Normalising:**

Above ✓ (1)

3.2 **Machining test:**

The chips heating colour ✓

• The chips curl ✓ (2)

3.3 Material tests:

- Sound test ✓
- Bending test ✓
- Filing test ✓
- Hardness test ✓
- Density test ✓
- Weight measurement ✓
- Magnetic test ✓
- Visual inspection/observation ✓
- Scratch test ✓

(Any 3 x 1) (3)

3.4 Quenching methods:

- Carburising ✓
- Nitriding ✓
- Cyaniding ✓

(Any 2 x 1) (2)

3.5 **Heat treatment temperature:**

- Pyrometer ✓
- Crayons ✓
- Visually ✓
- Magnet ✓

(Any 1 x 1) (1)

3.6 **Heat-treatment steps:**

- Heat the metal. ✓
- Soak the metal. ✓
- Cool the metal. ✓ (3) [14]

Mechanical Technology: Fitting and Machining 5 SC/NSC – Marking Guidelines

DBE/May/June 2024

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	B✓	(1)
4.2	C✓	(1)
4.3	B√	(1)
4.4	C✓	(1)
4.5	D✓	(1)
4.6	D✓	(1)
4.7	C✓	(1)
4.8	A✓	(1)
4.9	B√	(1)
4.10	A✓	(1)
4.11	B✓	(1)
4.12	A✓	(1)
4.13	A✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Advantages of tailstock set-over method:

- The automatic feed of the machine can be used. ✓
- Good finish. ✓
- Long tapers can be cut. ✓
- Accurate tapers can be cut. ✓
- Experience less operator fatigue. ✓

(Any 2 x 1) (2)

5.2 **Taper calculations:**

5.2.2 **Diameter of taper:**

$$\tan \frac{\theta}{2} = \frac{D - d}{2 \times l}$$

$$\tan \frac{\theta}{2} = \frac{D - d}{2 \times l}$$

$$\tan \frac{\theta}{2} = \frac{46 - d}{2 \times 155} \checkmark$$

$$\tan \frac{\theta}{2} = \frac{46 - d}{2 \times 155} \checkmark$$

$$\tan \frac{\theta}{2} = \frac{x}{155} \checkmark$$

$$x = \tan 3.5 \times 155 \checkmark$$

$$= 9.46 \text{ mm} \checkmark$$

$$d = 46 - 2x \checkmark$$

$$d = 46 - 2(9.46) \checkmark$$

$$d = 27.04 \text{ mm} \checkmark$$

$$d = 27.04 \text{ mm} \checkmark$$

$$(6)$$

5.3 Calculation of parallel key:

5.3.1 Width =
$$\frac{D}{4}$$

$$= \frac{82}{4} \quad \checkmark$$

$$= 20,50 \text{ mm} \checkmark$$
 (2)

5.3.2 Thickness =
$$\frac{D}{6}$$

= $\frac{82}{6}$ \checkmark
= 13,67 mm \checkmark (2)

Need an amazing tutor? www.teachme2.com/matric

Mechanical Technology: Fitting and Machining 7 DBE/May/June 2024 SC/NSC – Marking Guidelines

5.3.3 Lenght = 1,5 × diameter of shaft
= 1,5 × 82
$$\checkmark$$

= 123 mm \checkmark (2)

5.4 Advantages of gang milling:

- Several surfaces can be milled simultaneously. ✓
- Saving time. ✓
- Makes production more effective. ✓
- Fewer cutters need to be changed. ✓

(Any 3 x 1) (3) [18]

DBE/May/June 2024

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Gear calculations:**

6.1.1 Number of teeth:

Module =
$$\frac{PCD}{T}$$

$$T = \frac{PCD}{m} \checkmark$$

$$= \frac{156}{3} \checkmark$$

$$= 52 \text{ teeth } \checkmark$$
(3)

6.1.2 **Dedendum:**

Dedendum=1,157(m) =1,25(m)
=1,157×3
$$\checkmark$$
 OR =1,25×3 \checkmark
=3,47 mm \checkmark =3,75 mm \checkmark (2)

6.1.3 **Outside diameter:**

OD=PCD+2(m) = m (T+2)
=156+2(3)
$$\checkmark$$
 OR = 3 (52 + 2) \checkmark
=162 mm \checkmark = 162 mm \checkmark (2)

6.1.4 Circular pitch:

$$CP = m \times \pi$$

$$= 3 \times \pi$$

$$= 9,42 \text{ mm}$$

$$(2)$$

DBE/May/June 2024

6.2 **Dove tail calculations:**

$$W = 145 + 2(DE)$$

 $m = W - 2 (AC) - 2 (R)$ or $m = W - 2 (AC + R)$

6.2.1 Maximum width of dove tail (W):

Calculate DE:

$$\tan \alpha = \frac{DE}{AD} \checkmark$$

$$DE = AD \tan \alpha \checkmark \qquad OR$$

$$= 32 \tan 30^{\circ}$$

$$= 18,48 \text{ mm} \checkmark$$

$$W = 145 + 2(DE) \checkmark$$

$$\tan \theta = \frac{AD}{DE} \checkmark$$

$$W = 145 + 2(DE) \checkmark$$

$$= 145 + 2(18, 48) \checkmark$$

$$= 145 + 36, 96$$

$$= 181, 96 \text{ mm } \checkmark$$
(6)

6.2.2 Distance between the rollers (m):

Calculate AC:

$$\tan \alpha = \frac{BC}{AC} \checkmark$$

$$AC = \frac{BC}{\tan \alpha} \checkmark$$

$$= \frac{12}{\tan 30^{\circ}}$$

$$= 20,78 \text{ mm} \checkmark$$

$$\tan \theta = \frac{AC}{BC} \checkmark$$

$$AC = BC \tan 60^{\circ} \checkmark$$

$$= 12 \tan 60^{\circ}$$

$$= 20,78 \text{ mm} \checkmark$$

$$\begin{array}{lll} m = W - 2 \left(AC\right) - 2 \left(R\right) \checkmark & m = W - 2 \left(AC + R\right) \checkmark \\ = 181,96 - 2 \left(20,78\right) - 2 \left(12\right) \checkmark & = 181,96 - 2 \left(20,78 + 12\right) \checkmark \\ = 181,96 - 41,56 - 24 & = 181,96 - 65,56 \\ = 116,40 \text{ mm} \checkmark & = 116,40 \text{ mm} \checkmark \end{array} \tag{6}$$

Mechanical Technology: Fitting and Machining 10 SC/NSC – Marking Guidelines DBE/May/June 2024

6.3 Milling of spur gear:

6.3.1 **Indexing:**

Indexing =
$$\frac{40}{n}$$
Indexing = $\frac{40}{A}$

$$= \frac{40}{160} \checkmark$$

$$= \frac{1}{4} \times \frac{6}{6}$$

$$= \frac{6}{24} \checkmark$$

Approximate indexing:

No full turns and 6 holes on a 24-hole circle ✓

OR

No full turns and 7 holes on a 28-hole circle ✓ (3)

6.3.2 **Change gears:**

$$\frac{D_{DR}}{D_{DN}} = (A - n) \times \frac{40}{A}$$

$$\frac{D_{DR}}{D_{DN}} = (160 - 163) \times \frac{40}{160} \quad \checkmark$$

$$= -3 \times \frac{40}{160}$$

$$= \frac{-120}{160}$$

$$= \frac{3}{4} \times \frac{8}{8} \quad \checkmark$$

$$\frac{D_{DR}}{D_{DN}} = \frac{24}{32} \quad \checkmark$$

(4) [**28**]

Copyright reserved

Mechanical Technology: Fitting and Machining 11

SC/NSC – Marking Guidelines

DBE/May/June 2024

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 **Define hardness:**

Hardness is a material's ability to resist deformation, ✓ usually by indentation/penetration/scratching. ✓

7.2 Hardness testers:

- Brinell hardness tester ✓
- Rockwell hardness tester ✓
- Vickers hardness tester ✓

(Any 2 x 1) (2)

7.3 **Microscope:**

To measure ✓ the diameter/depth of the indentation ✓ left in the test material.

(2)

(2)

7.4 **Tester:**

7.4.1 Tensile tester ✓ (1)

7.4.2 Hand wheel ✓ (1)

7.5 **Hardness tester:**

Rockwell hardness tester ✓ (1)

7.6 **Moment and Force:**

Test the reaction ✓ on either side of simply loaded beam. ✓ (2)

7.7 **Reading:**

2,00 + 0,40 + 0,5 = 2,90 mm (2) [13]

Mechanical Technology: Fitting and Machining 12 SC/NSC – Marking Guidelines DBE/May/June 2024

QUESTION 8: FORCES (SPECIFIC)

8.1 Forces:

8.1.1 Horizontal components:

$$\Sigma HC = 75\cos 35^{\circ} - 15\cos 45^{\circ} - 5\cos 0^{\circ} - 45\cos 60^{\circ}$$

$$\Sigma HC = 61,44 - 10,61 - 5 - 22,5$$

$$\Sigma HC = 23,33 \text{ N} \checkmark$$
(5)

8.1.2 **Vertical components:**

$$\sum VC = 75\sin 35^{\circ} + 15\sin 45^{\circ} - 5\sin 0^{\circ} - 45\sin 60^{\circ}$$

$$\sum VC = 43,02 + 10,61 - 0 - 38,97$$

$$\sum VC = 14,66 \text{ N}$$
(4)

OR

Force	θ	8.1.1 $\sum HC/x = F\cos\theta$		8.1.2 $\sum VC/y = F \sin \theta$	
25 N	90°	HC = 75cos35°	61,44 N ✓	VC = 75sin35°	43,02 N ✓
40 N	00	HC = 15cos135°	10,61 N ✓	VC = 15sin135°	10,61 N ✓
55 N	290°	HC = 5cos180°	-5 N ✓	VC = 5sin180°	0 N
120 N	210°	HC = 45cos240°	-22,5 N ✓	VC = 45sin240°	-38,97 N ✓

Total 23,33 N ✓ 14,66 N ✓ (9)

8.1.3 **Resultant:**

$$R^{2} = VC^{2} + HC^{2}$$

$$R = \sqrt{(14,66)^{2} + (23,33)^{2}} \checkmark$$

$$R = \sqrt{759,20}$$

$$R = 27,55N \checkmark$$
(2)

Mechanical Technology: Fitting and Machining 13 SC/NSC – Marking Guidelines DBE/May/June 2024

8.1.4 Angle and direction of resultant: Angle:

$$\tan \theta = \frac{VC}{HC}$$

$$\theta = \tan^{-1} \left(\frac{14,66}{23,33}\right) \checkmark \quad \mathbf{OR}$$

$$\theta = \tan^{-1} \left(0,63\right)$$

$$\theta = 32,14° \checkmark$$

$$\tan \theta = \frac{HC}{VC}$$

$$\theta = \tan^{-1} \left(\frac{23,33}{14,66}\right) \checkmark$$

$$\theta = \tan^{-1} \left(1,59\right)$$

$$\theta = 57,86° \checkmark$$

Direction:

R = 27,55 N 32,14° North of East

OR

OR

 $R = 27,55 \,\text{N} \, 57,86^{\circ} \, \text{East from North}$ (3)

8.2 UDL Beam:

8.2.1 **Distributed load:**

Uniform distributed load:

8.2.2 Reaction in support A: Take moments about B:

$$(160 \times 2.5) + (90 \times 7) + (55 \times 14) = (A \times 14)$$

$$400 + 630 + 770 = 14A$$

$$A = \frac{1800}{14}$$

$$A = 128.57N \checkmark$$

Reaction in support B: Take moments about A:

Take Homents about A:

$$(B \times 14) = (55 \times 0) + (90 \times 7) + (160 \times 11,5)$$

$$14B = 0 + 630 + 1840$$

$$B = \frac{2470}{14}$$

$$B = 176,43 \text{ N} \checkmark$$
(7)

Mechanical Technology: Fitting and Machining 14 SC/NSC – Marking Guidelines DBE/May/June 2024

8.3.1 **Diameter:**

$$\sigma = \frac{F}{A}$$

$$A = \frac{\pi \times d^2}{4}$$

$$A = \frac{F}{\sigma} \checkmark$$

$$d = \sqrt{\frac{4A}{\pi}} \checkmark$$

$$A = 3,19 \times 10^{-4}$$

OR

$$d = \sqrt{\frac{4 \times (3,19 \times 10^{-4})}{\pi}} \checkmark$$

$$\frac{\pi d^2}{4} = 3,19 \times 10^{-4} \checkmark$$

$$= 0.02015 \text{ m}$$

$$\pi \times d^2 = 1,28 \times 10^{-3}$$

$$\sqrt{d^2} = \sqrt{4.06 \times 10^{-4}} \checkmark$$

$$d = 0.02015 \text{ m}$$

$$d = 20,15 \text{ mm } \checkmark$$
 (4)

8.3.2 Change in length:

$$E = \frac{\sigma}{\varepsilon}$$

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon = \frac{56,5 \times 10^{6}}{90 \times 10^{9}} \checkmark$$

$$\varepsilon = 6,28 \times 10^{-4} \checkmark$$

$$\varepsilon = \frac{\Delta L}{oL}$$

$$\Delta L = \varepsilon \times oL$$

$$\Delta L = 6.28 \times 10^{-4} \times 0.275$$

$$\Delta L=1,73\times 10^{-4}~m$$

$$\Delta L = (1,73 \times 10^{-4}) \times 1000$$

$$\Delta L = 0.17 \text{ mm} \checkmark$$

(6)

[33]

Mechanical Technology: Fitting and Machining 15 SC/NSC – Marking Guidelines DBE/May/June 2024

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 **Preventative maintenance:**

- Checking for wear and tear on belt. ✓
- Checking belt alignment. ✓
- Checking the tensioning devices. ✓
- Checking the tensioning setting. ✓
- Make sure all guards are in place. ✓
- Checking for dirt on belt and pulleys. ✓

(Any 4 x 1) (4)

9.2 **High power drives:**

- Gear drive ✓
- Multiple belt drives ✓
- Tooth belt drives ✓
- Chain drives ✓

(Any 2 x 1) (2)

9.3 **Bonding methods:**

- Plastic welding (heat) ✓
- Adhesive/PVC-Weld ✓

(2)

9.4 Uses of the materials:

9.4.1 **Nylon:**

- Pulleys ✓
- Ropes ✓
- Bushes ✓
- Gears ✓
- Wear pads ✓
- Wheels ✓
- Rollers ✓
- Gaskets ✓
- Seals ✓
- Machinery parts ✓

(Any 2 x 1) (2)

9.4.2 **Fibreglass:**

- Machine covers ✓
- Roof covering ✓
- Woven cloth ✓

(Any 2×1) (2)

DBE/May/June 2024

Mechanical Technology: Fitting and Machining

SC/NSC - Marking Guidelines 9.4.3 **Bakelite uses:** Circuit boards ✓ Electrical components ✓ Electrical insulators ✓ Kitchenware ✓ Jewellery ✓ Pipe stems ✓ Toys ✓ Distributor rotor ✓ Distributor cap ✓ Aircraft components ✓ Bearings ✓ Clutch linings ✓ Brake linings ✓ Laminated materials ✓ (Any 2 x 1) (2) Thermo-hardened/Thermosetting or Thermoplastic composite: 9.5 9.5.1 Thermoplastic ✓ (1) 9.5.2 Thermo-hardened / Thermosetting ✓ (1) Thermo-hardened / Thermosetting ✓ 9.5.3 (1) 9.5.4 Thermoplastic ✓ (1) [18]

Mechanical Technology: Fitting and Machining 17 SC/NSC – Marking Guidelines DBE/May/June 2024

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Uses of multiple threads:

- Fire hydrants ✓
- Valves ✓
- Aircraft landing gear ✓
- Industrial machines ✓
- Lids of containers/jars ✓
- Fly press ✓

(Any 3 x 1) (3)

10.2 Multiple screw threads:

- They provide more bearing surface. ✓
- Do not strip easily. ✓
- To provide faster linear movement. ✓
- They are more efficient. ✓
- They lose less power to friction. ✓

(Any 3 x 1) (3)

10.3 **Square Thread:**

10.3.1 **Pitch:**

Pitch =
$$\frac{\text{Lead}}{\text{Number of starts}}$$

= $\frac{46}{2}$ \checkmark
= 23 mm \checkmark (2)

10.3.2 **Pitch diameter:**

$$D_{m} = OD - \frac{P}{2}$$

$$= 80 - \frac{23}{2} \checkmark$$

$$= 68,50 \text{ mm} \checkmark$$
(2)

10.3.3 Helix angle of the thread:

$$\tan \theta = \frac{\text{Lead}}{\pi \times D_{\text{M}}}$$

$$= \frac{46}{\pi \times 68,50} \checkmark$$

$$\theta \stackrel{\checkmark}{=} \tan^{-1}(0,213755544)$$

$$= 12,07^{\circ} \quad \text{or} \quad 12^{\circ}4' \checkmark$$
(4)

Mechanical Technology: Fitting and Machining 18 SC/NSC – Marking Guidelines DBE/May/June 2024

10.3.4 Leading tool angle:

Leading tool angle =
$$90^{\circ}$$
 - (helix + clearance angle)
= 90° - ($12,07^{\circ}$ + 3°) \checkmark
= $74,93^{\circ}$ or $74^{\circ}55'$ \checkmark (2)

10.3.5 **Following tool angle:**

Following tool angle =
$$90^\circ$$
 + (helix – clearance angle)
= 90° + ($12,07^\circ$ – 3°) \checkmark
= $99,07^\circ$ or $99^\circ4'$ \checkmark (2)

DBE/May/June 2024

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic calculations:

11.1.1 The fluid pressure in the hydraulic system in MPa:

A (Plunger) =
$$\frac{\pi d^2}{4}$$

A = $\frac{\pi (0,03)^{-2}}{4} \checkmark$
A = $0,71 \times 10^{-3} \text{ m}^2 \checkmark$
P = $\frac{F}{A}$
P = $\frac{900}{0,71 \times 10^{-3}} \checkmark$

$$P = 1,27 \times 10^{6} \text{ Pa}$$

$$P = 1,27 \text{ MPa}$$
(5)

11.1.2 Mass in kg:

$$\frac{F_{A}}{A_{A}} = \frac{F_{B}}{A_{B}}$$

$$F_{B} = \frac{F_{A} \times A_{B}}{A_{A}} \checkmark$$

$$F_{B} = \frac{900 \times 31,42 \times 10^{-3}}{0,71 \times 10^{-3}} \checkmark$$

$$F_{B} = 39828,17 \text{ N}$$
Mass = 3982,82 kg **OR** 4059,96 kg \checkmark (4)

Mechanical Technology: Fitting and Machining 20 SC/NSC – Marking Guidelines

DBE/May/June 2024

11.2 Function of hydraulic components:

11.2.1 **Motor**

Drives the hydraulic pump. ✓ (1)

11.2.2 One-way-valve

To prevent backflow of hydraulic fluid. ✓ (1)

11.2.3 Reservoir

Contains the hydraulic fluid. ✓ (1)

11.3 Belt drive:

11.3.1 The rotational frequency in r/sec:

$$\begin{split} N_{DR} \times D_{DR} &= N_{DN} \times D_{DN} \\ N_{DR} &= \frac{N_{DN} \times D_{DN}}{D_{DR}} \quad \checkmark \\ N_{DR} &= \frac{N_{DN} \times D_{DN}}{D_{DR}} \quad \checkmark \\ N_{DR} &= \frac{5,83 \times 0,5}{0,09} \quad \checkmark \\ N_{DR} &= \frac{350 \times 500}{90} \quad \checkmark \\ N_{DR} &= \frac{2,92}{0,09} \\ N_{DR} &= 32,39 \text{ r/sec} \quad \checkmark \\ \end{split}$$

Mechanical Technology: Fitting and Machining 21 SC/NSC – Marking Guidelines DBE/May/June 2024

11.3.2 **Power transmitted in Watt:**

$$P = \frac{(T_1 - T_2) \pi D N}{60}$$

$$P = (1900 - 450) \pi \times 0,09 \times 32,39$$

$$P = 13279,18 W \checkmark$$

OR

$$P = \frac{(T_1 - T_2) \pi D N}{60}$$

$$P = (1900 - 450) \pi \times 0,5 \times 5,83$$

$$P = 13278,73 W$$

OR

$$P = \frac{(T_1 - T_2) \pi D N}{60}$$

$$P = (1900 - 450) \pi \times 0,5 \times 350$$

$$P = 13286,32 W$$

(4)

(2)

11.4 Avoid slipping:

- Adding a belt tensioning device. ✓
- Not subjected to sudden loads. ✓
- Do not overload the drive. ✓
- Cover the drives to guard against dust and fluids. ✓
- Increase the contact area of the belts. ✓
- Use toothed belts and pulleys. ✓

(Any 2 x 1)

Copyright reserved

Mechanical Technology: Fitting and Machining 22 SC/NSC – Marking Guidelines DBE/May/June 2024

11.5 Gear drive:

11.5.1 **Number of teeth:**

$$\frac{N_{input}}{N_{output}} = \frac{Product of teethon drivengears}{Product of teethon drivergears}$$

$$\frac{N_A}{N_D} = \frac{T_B \times T_D}{T_A \times T_C}$$

$$T_D = \frac{N_A \times T_A \times T_C}{N_D \times T_B} \checkmark$$

$$T_D = \frac{3500 \times 33 \times 25}{1050 \times 55} \checkmark$$

$$T_D = 50 \text{ teeth } \checkmark$$
(3)

11.5.2 **Torque:**

$$P = \frac{2 \pi N T}{60}$$

$$T = \frac{P \times 60}{2 \times \pi \times N} \checkmark$$

$$T = \frac{(737.4 \times 10^{3}) \times 60}{2 \times \pi \times 1050} \checkmark$$

$$T = 6706.33 \text{ Nm} \checkmark$$

$$P = 2 \pi N T$$

$$T = \frac{P}{2 \times \pi \times N} \checkmark$$

$$T = \frac{(737.4 \times 10^{3})}{2 \times \pi \times 17.5} \checkmark$$

$$T = 6706.33 \text{ Nm} \checkmark$$
(3)

TOTAL: 200